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A technique for measuring velocity gradients in laminar flows by homodyne light 
scattering is presented. A theory which describes the light-scattering spectrum is 
derived that includes the effects of different types of linear flow fields, particle diffusion 
and the intensity profile in the scattering volume. The conditions which must be 
satisfied in order that the theory describe the experimental situation are outlined and 
complementary experiments are performed which both verify the theory and apply 
the technique. Verification is provided using the flow in a Couette device, and the flow 
due to single rotating cylinder in a large bath of fluid. The technique is then applied 
to measure the spatial variation of the shear rate in a four-roll mill. 

1. Introduction 
The development of an accurate experimental method for determination of velocity 

gradients in a liquid undergoing steady, laminar flow is a problem of obvious practical 
importance. There is, of course, a variety of experimental techniques to determine the 
velocity in a flowing fluid, one of the most popular methods being laser-Doppler 
velocimetry. The use of laser light as a probe has the distinct advantage that it imparts 
essentially no disturbance to the velocity field. However, relatively little has been 
done which addresses the direct determination of velocity gradients. 

The usual procedure for measuring velocity gradients using the laser-Doppler 
velocimeter (LDV) is to first measure the velocity as a function of spatial position 
and then differentiate the data. However, thip procedure suffers from the inherent 
difficulties of differentiating experimental data and is particularly suspect in the 
regions of large velocity gradients which are likely to be of greatest interest. Not only 
may the region being studied be too thin to allow sufficient spatial resolution of the 
velocity field for differentiation with any reasonable accuracy (the LDV system yields 
an average velocity over the scattering volume which is typically about 0.1 mm in 
linear extent), but the LDV signal is also complicated by a large variation in velocity 
across the scattering volume and is difficult to interpret (Berman & Dunning 1973). 
In this paper, we demonstrate how the homodyne mode of light scattering spectroscopy 
may be used to directly measure the average velocity gradient in the scattering volume 
from a single in situ experiment, thereby minimizing both of these problems. This 
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technique has been largely overlooked as a way to probe flowing liquids, although it  
was one of the earliest methods to be used which incorporated a laser light source. 
The earliest application was by Bourke et al. (1970), who studied a turbulent pipe 
flow using homodyne spectroscopy and determined that spatial variations in the 
velocity existing inside the scattering volume were the dominant contribution to  the 
frequency spectrum of the scattered light. The use of this technique for the study of 
turbulent flow fields is, however, greatly limited owing to  a lack of knowledge of the 
nature of the kinematics of the flow field. It is, therefore, necessary to  adopt some 
model of the turbulent flow in order to  analyse the experimental data and for that 
reason the interpretation is somewhat equivocal and dependent on the quality of the 
model used. This paper treats the much simpler case of steady, laminar flow where 
the kinematics are known and there is therefore no need for recourse to modelling of 
the flow. The analysis of the experiment is consequently less ambiguous. 

The paper consists of two main parts. I n  the first, we present the theoretical develop- 
ments which are necessary to determine the local velocity gradient from the homodyne 
spectrum of light scattered from small particles which are immersed in a steady laminar 
flow. I n  the second, we report complementary experimental results which verify the 
method and illustrate its application. A primary objective of both the analysis and 
the experiments is to delineate the conditions which must be satisfied in order that the 
measurement of velocity gradients by homodyne light scattering be accurate and un- 
ambiguous. For this reason, our theoretical analysis considers not only the effect of a 
velocity gradient on the observable frequency spectrum, but also the effects of different 
types of laminar motion, of variations in the light intensity profile of the incident beam 
in the scattering volume, and of random, diffusive motions of the scattering particles. 

2. Theory 
We consider the light scattered by small particles which are immersed in a liquid 

that is undergoing an arbitrary steady, laminar motion. The light-scattering experi- 
ment is sketched in figure 1 .  The incident light is a single, monochromatic beam which 
is generated by a laser source, and the scattered light is viewed by a square-law 
detector (in our case, a photomultiplier tube) through two pinholes which serve to  
collimate the scattered beam, and thus define the extent of the scattering volume. 
The particles are assumed to  be rigid, and small enough that their mean translational 
velocity is indistinguishable from the ' undisturbed ' velocity of the suspending liquid. 
Furthermore, they are assumed to  be present at low concentration so that they neither 
alter the motion of the suspension as a whole, nor contribute to  a significant level of 
multiple-scattering events. Finally, the Rayleigh-Debye condition (Berne & Pecora 
1976) is assumed to be satisfied, which requires an upper bound of h/4rlm - 11 on 
the average particle dimension, where h is the wavelength of the incident light and 
m is the ratio of the solvent refractive index to that of the particles. 

The frequency spectrum of the scattered light from the scattering volume V is 
determined by the motions of the scattering elements (both random and deterministic). 
By measuring the spectrum of the scattered light mixed with the incident light 
(heterodyne mode) it is possible to  determine the mean velocity of the scattering 
centres in the scattering volume (Edwards et al. 1971). The effect of velocity gradients 
and of random motion8 due to  diffusion is to  broaden the heterodyne spectrum, but 
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FIGURE 1 .  Light-scattering geometry: k, is the scattered-light wave vector, ki is the incident- 
light wave vector, 0 is the scattering angle. The vector q is orientated along the x axis in the 
laboratory frame. 

these are second-order effects compared to  the Doppler shift of the frequency which is 
caused by the mean motion of the particles in suspension. 

The present paper is concerned with the frequency spectrum of scattered light when 
it  is ‘mixed with itself’ (i.e. the so-called homodyne mode). I n  this case, it will be 
seen that the effect of the mean velocity on the frequency correlation function can be 
neglected, relative either to the effects of differences in the mean velocity across the 
scattering volume or of particle diffusion, provided only that the time scales associated 
with the mean velocity gradient, or with diffusion on the length scale lql--l (see, for 
example, figure 1) are sufficiently short compared to the transit time of a particle 
across the scattering volume. I n  these circumstances, we shall see that the homodyne- 
scattering experiment provides a direct measurement of either the mean velocity 
gradient or of the particle diffusivity, depending upon which of these dynamical 
processes is characterized by the shorter time scale. 

The scattered light spectrum for the heterodyne mode is given by the heterodyne 
correlation function, F,, which, in the time domain has the form (Berne & Pecora 
1976) 

N 

F,(q, t )  = z (Ej*(O) E,(t) exp { i q .  [r,(t) - rj(O)I)). (1)  
j=1 

Here, q is the scattering vector which is defined in figure I ,  E,(t) is the amplitude of 
the light scattered by particle j and ri(t) is the position of the centroid of particle j 
with respect to an arbitrary origin in the scattering volume. The summation is over 
all particles in the scattering volume for a given realization of the scattering experi- 
ment and the angle brackets represent an ensemble average over many realizations. 

Provided that the contribution of each particle t o  the scattered light is statistically 
independent of any other and randomly distributed, i t  may be shown (Berne & Pecora 
1976) that the homodyne spectrum, F,, is related to  the heterodyne spectrum by 

4 = IF,(q, tp. ( 2 )  
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It can be shown that this rela.tion is also valid for the case of flowing particles where 
the deterministic motions dominate those due to random processes, provided the time 
scale associated with the decay of the heterodyne correlation function is sufficiently 
short compared to the reciprocal of the local velocity gradient y-l. This condition 
ensures that during the time scale of the experiment, any two particles will be statistic- 
ally independent allowing the homodyne correlation function to be factored into the 
square modulus of the heterodyne correlation function as in equation (2). This condi- 
tion is almost always satisfied under normal laboratory conditions. Thus, we shall first 
analyse the heterodyne spectrum via equation ( I ) ,  and then use (2) to calculate the 
corresponding homodyne spectrum. 

Equation ( 1 )  can be simplified if the amplitude function E,(t) and the phase factor 
exp (iq . [r(t) - r(O)]) vary on sufficiently different time scales. For spherical, optically 
homogeneous particles the amplitude function varies principally with the transit time 
of a particle across the scattering volume. If the particles are optically or geometrically 
anisotropic, the amplitude function will also vary on the additional time scale asso- 
ciated with particle rotation. However, we shall focus our attention for the moment 
on the simpler case of particles which are isotropic scatterers and return to the question 
of anisotropy a t  the end of the section. Thus, the amplitude factor will be assumed to 
vary on the transit time scale 

rt = L / U ,  (3) 

where L is a length scale characteristic of the scattering volume, and U is the mean 
particle velocity in the volume. The phase factor, on the other hand, varies principally 
on the shortest of the possible time scales which is characteristic of particle displace- 
ment over a length scale, 1qI-l. As we shall show later, this is usually 

T8 E (qyLcosq5)-1, (4) 

which is inversely proportional to the magnitude of the local velocity gradient. Here, 
q5 is the angle between the scattering vector, q, and the local mean velocity vector, v. 
In order to minimize rs, this angle will normally be set to zero in the present application. 
Now, a typical magnitude for lq( is lo6 cm-1. Thus, by controlling the size of the 
scattering volume, L, the time scale, 7,, of variations in the phase factor of (1)  can be 
made quite short [say, 0(10-2) or smaller] relative to the time scale rt, of variations 
in the amplitude factor for most systems. We shall therefore assume the condition 

rt/r, = qyL2/U 9 1 (5) 

to hold, thus implying that the particle moves only a short distance relative to L on 
the time scale rs. Under these circumstances, the amplitude factor in ( 1 )  is essentially 
constant over the time scale for decay of the correlation function (i.e. rs),  and equation 
( 1 )  can be approximated in the simpler form 

N N 

j= l  j= 1 
4(q, t )  = c 4 (exp {iq. [rj(t) - rj(O)1}) = 2 Ij4j(St), (6) 

where I j  = (Ej(0)* E j ( 0 ) )  is the intensity of light scattered by particle j and Fsi is 
the so-called self-intermediate scattering function. We may note that for intermediate 
values of T ~ / T ~ ,  i.e. < 1, the phase and amplitude factors in (1) vary on comparable 
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time scales, and experimental analysis of the frequency spectrum is impractical except 
in the opposite limit rt/rs 4 1, where measurement of F1(q, t )  corresponds to  the single 
beam velocimeter, described by Pike (1976). 

We shall restrict our attention in .the present communication to the limiting case 
( 5 )  where the approximation (6) is valid. Further analysis of the correlation function 
thus reduces to a determination of the self-intermediate scattering function, Fsi(q, t ) .  
This analysis is facilitated by first solving for the Fourier transform of Fs,, (the Van- 
Hove self space-time correlation function) 

G,, = d 3q exp [ - iq . 5ti] (exp { iq  . [rj(t)  - r,(O)]}) 

(7) 

1 
= (42, - [r,(t) - rj(O)I)), 

and then inverting to determine Fsj. It may be seen from (7) that Gsj is nothing more 
than the conditional probability density for a particle to be at a position ri ( t )  at a 
time, t ,  given that it starts a t  r j ( 0 )  a t  t = 0 (Berne & Pecora 1976). Thus, Gsi represents 
the solution of the classical convective diffusion equation for the particle, 

3 5 + V . ( V j G , , ) - D V z G s j  at = 0 (8) 

subject to 
GSj(Zi, 0)  = a(%,). 

Here, i t  should be emphasized that 5ti is defined relative to a co-ordinate system with 
an origin at ri(0). Once Gsj is known, the function Fsj can be determined by means of 
the inverse transform 

The diffusion coefficient, D,  has been taken as isotropic in (8) as a consequence of the 
earlier restriction to spherical particles. 

Since the convection or diffusion process relevant to the light-scattering experiment 
is characterized by a maximum length scale, L, corresponding to the scattering volume, 
we can approximate the velocity of particle j as 

L 

vj = vj+r.sI,  (9) 

where v, is the velocity of a particle in the scattering volume a t  the point x = ri and 
I' is the local velocity gradient tensor. Substituting (9) into (8) and taking the Fourier 
transform thus leads to 

I 
The solution of (10) can be obtained by the method of characteristics. The result is 
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In order to calculate the heterodyne correlation function Fl(q, t ) ,  it  is necessary to 
sum over all the particles in the scattering volume. Provided the number of such 
particles is large, this sum can be transformed to a volume integral giving 

where I(x) is the intensity profile of the incident beam in the scattering volume, and 
V(z) is the velocity of the particles, which is a.pproximated as 

V(X) = u+r.x. (13) 

Here U is the average particle velocity within the scattering volume, rather than the 
mean velocity of the position of particlej at  time zero as in (9). Substituting (13) into 
(12)) the heterodyne correlation function then becomes 

Fl(q, t )  = exp ( -Jot [Dq’Z(t’) + iU. q’(t‘)] dt’) ///dz31(x) exp { -Io‘ dt’q’(t’) . r. x) 

The corresponding homodyne correlation function, calculated from equation (2), is 
then 

where 1 is the Fourier transform of the intensity profile I, and 

The homodyne correlation function differs from the heterodyne function primarily 
in the fact that there is no dependence on the mean velocity U. In  particular, both 
functions involve the velocity gradient, I’, and both therefore could, in principle, 
provide a basis for its experimental determination. As a practical matter, however, 
the homodyne mode provides a much superior technique. The response of the hetero- 
dyne correlation function with time will, in most cases, be dominated by the mean 
velocity term since the associated time scale, (pU)-l will usually be much shorter 
than either of the time scales, (Dq2)-1 or (qyL)-l, which are associated with diffusion 
or the velocity gradient, ([r[( = y. Thus, except for extremely small values of U ,  
determination of the velocity gradient from the heterodyne correlation function would 
be difficult. The magnitude of the homodyne correlation, on the other hand, will 
normally be dominated by the velocity gradient term. Furthermore, the homodyne 
technique is much simpler to implement since no additional optics or alignment is 
required to deflect and mix the incident beam with the scattered signal. 

The effect of the velocity gradient enters primarily through the Fourier transform, 
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of the intensity profile of the incident beam in the scattering volume. By way of 
example, we have calculated the complete homodyne correlation function for two 
specific linear flows of the type (13). The first is simple shear flow where 

and 

(16) 
and the second is plane, hyperbolic flow where 

The components of q have been denoted as (k,Z,m) in (16) and (17). Examination of 
these expressions shows that the homodyne correlation function varies on t,hree 
independent time scales 

7f y-’, 70 (p20)-l 

and 7s(q5 3 0), which was defined in equation (4). Homodyne light scattering spectro- 
scopy is practical as a means for determining the local velocity gradient, only when 

78 < (7fy7D)*  (18) 

In this case, the expressions (16) and (17) can be approximated in the simpler forms 

and 

respectively, and the time rate of decay of the correlation function provides a direct 
measure of the velocity gradient. In the case of a general linear flow subject to the 
same assumptions we obtain 

Fz( q, t )  = 1 /I/ d 3 ~ I ( x )  exp { - iq . r . x t }  . (a 
The expressions (19)-(21) provide the theoretical basis for determining the velocity 

gradient from a measurement of the homodyne correlation function, and will be used 
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to analyse the experimental data of 5 3 of this paper. If either of the conditions (18)) 
or ( 5 )  is not satisfied for a given experimental set-up, the homodyne spectrum will 
reflect (or even be dominated by) additional contributions which arise from particle 
diffusion and/or translation across the scattering volume. I n  this case, the utility of 
homodyne scattering as a tool for determination of the local velocity gradient will be 
lost. Because of the importance of the relative magnitudes of the various time scales, 
r f ,  rs and rD, in establishing the domain of validity of the homodyne experiment as 
a method of measuring the velocity gradient, it is worthwhile to consider their relative 
values for typical experimental conditions. Thus, we have 

and 

where 1 is the characteristic length scale of the particle and Pe = y12/D is the particle 
PBclet number. Now, the ratio (L/1) will typically be O(iO3) or larger, whereas ql is 
generally O( 1 )  or less in order that  the Rayleigh-Debye approximation be valid. Thus, 
rr/rs - 0(103), while rD/rs - 103Pe. The latter ratio, rD/rS, will be large provided 
Pe > 10-1 t o  lov2. For non-zero y, this condition on Pe will almost alwiys be satisfied. 
Thus, the condition (18) will be satisfied and the homodyne scattering experiment will 
almost always be dominated by the contribution of the velocity gradient in the form 

To complete the determination of the expected homodyne spectrum, when the 
conditions ( 5 )  and (18) are met, it is necessary to calculate the Fourier transform, (21)) 
of the intensity distribution of the incident beam in the scattering volume. I n  general, 
however, this intensity profile will not be precisely known,t and it is thus important, 
if homodyne scattering is to  be effective for determination of the local velocity gradient, 
that  the spectrum be relatively insensitive to moderate variations in I ( x ) .  For purposes 
of investigating this sensitivity, we have considered the following two intensity dis- 
tributions for the beam geometry of figure 1 with q = (q, 0 , O )  

(22) 

(19) - (21) .  

P(x’y’z’) = exp [ - (d2 + Y ’ ~ ) / L ~  - d2/a2L2 cosec2 81 

and the ‘ tophat ’ profile 

(exp ( - d2/a2L2 cosec20) for ( x t 2  + Y ’ ~ )  < L2 

‘lo for ( ~ ’ ~ + y ’ ~ )  2 L2 
p(xty’2’) = (23) 

where 8 is the scattering angle, x t  = (x‘, y’, 2 ‘ )  is the beam co-ordinate system defined 
in figure 1, L is the length-scale characteristic of the width of the incident beam and a 
is the ratio of the length of the scattering volume in the z direction to the width L. 
With these expressions for the intensity profile, the equations ( 1 9 )  and (20)  yield the 
following. For shear flow, q . I’. xt = qyyt: 

(0,) intensity profile I(1): F2(q, t )  = exp { - &q2y2L2t2}; (24) 

t In  spite of the fact that  I(x) can be measured in a reasonably straightforward manner, it 
will only stay fixed for about 24 hours, and accurate knowledge of I(x) would thus require 
constant recalibration of the instrument. 
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FIGURE 2. Calculated homodyne correlation function for two choices of the light-intensity profile 

in the scattering volume, using the scattering geometry of figure 1. 

( b )  intensity profile 10: F2(q, t )  = [2J,cqyLt)/qyLtl2. (25) 

For two-dimensional extensional flow, q . I' . xt = qxyt = qz' sin +#yt + qx' cos tort: 
(a)  intensity profile P: F,(q, t )  = exp [ - &q2y2L2t2(cos2 $0 + a2 sin2 +8/sin2 8 ) ] ;  (26) 

[ q2yBL2aesin2+0] [ 2J,(qyLt cos 40) ( b )  intensity profile P): F,(q, t )  = exp - 
2 sin2 8 qyLt cos 48 

Here J ,  is a Bessel function of the first kind. 
Figure 2 compares the correlation functions described by equations (24) and ( 2 5 ) .  

For large times, the behaviour of the correlation function, F,(q, t ) ,  is fundamentally 
different for the two intensity distribution functions: I ( ] )  produces monotonically 
decreasing correlation functions while those calculated for I@) show time-dependent 
oscillations. However, the characteristic time scale in both cases is proportional to 
qyL and in the region of primary experiment interest (qyLt < 4) the qualitative 
behaviour produced by both I(,) and It2) is the same. Comparison of (24) and ( 2 5 )  or 
(26) and (27) suggests that  the principal influence of theJloui type on F,(qt) is to alter 
the dependence of the characteristic decay time on the scattering angle 8. 

I n  general, the correlation function will be a function of more than one component 
of the velocity gradient tensor r, which has eight independent components if the fluid 
is incompressible. For the two specific flow types considered above and in the experi- 
ments described in the following section, the orientation of the vector q was chosen 
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so that only one component of I’ was projected on to q .  This will not in general be 
possible. However, the individual components of I’ can still be measured, at least in 
principle, by creating an anisotropic scattering volume which has one length scale 
which is considerably larger than the other two. Thus, for example, we may consider 
an incident intensity distribution 

I(x) = w4 s ( Y ) f ( Z ) ,  
where 6( ) is a Dirac delta function, in which it is assumed that the length scale of the 
scattering volume in the z direction is much larger than along x or y .  In this case, 
the gradients in the velocity with respect to z will dominate the decay of the correlation 
function and each individual component of I’ can be measured by independently 
varying the orientations of the scattering vector, q, and the vector defining the largest 
length scale of the scattering volume. 

All of the analysis of this section, from equation (3) onward, has been restricted to 
spherical particles, which are optically homogeneous and isotropic. If the particles 
are non-spherical or optically anisotropic, their rotational motions will influence the 
light-scattering spectrum, both through the amplitude function and the phase factor 
of equation (1) .  The time scale of rotationally induced variations in the amplitude 
factor will be a-1 where R is the magnitude of the angular velocity of the particle. 
In order to consider the role of rotations on the phase factor it is necessary to include 
an integration over the internal co-ordinates of equation ( 1  1).  For a rod-like particle 
of length I and unit vector p(t) along the rod axis, the homodyne correlation function 
(neglecting diffusive motions) is 

Fz(q , t )  = ~ ~ ~ ~ d 3 x 1 ( x ) e n p { i q . r . x t )  /B 
Thus, the time scale of variations in the phase factor which are caused by particle 
rotation is 

Since the angular velocity R will be at  most the same order as the velocity gradient y, 
the time scales characteristic of rotations of anisotropic particles will in general be 
long compared to the velocity gradient time scale (qyL)-I and so may be ignored. 

The analysis can also be extended to include the effects of curvature in the velocity 
field a2vi/axj ax,. This may be important if there is a significant change in the velocity 
gradient over the scattering volume. For example, in the case of shear flow already 
considered, if the velocity field is actually 

t ,  = (qlQ)-1, 

v = (u+YY+py2 ,0 ,  O), 
the homodyne correlation function becomes (using the Gaussian intensity distribution 
I(l) and the geometry of figure 1 )  
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If /32L2/y2 < 1, the curvature effect will be unimportant and this expression reduces 
to the form (23) found earlier for a linear shear field. If this condition is not satisfied, 
on the other hand, the homodyne correlation function is no longer the square modulus 
of the Fourier transform of the intensity function and a new time scale (q/3L2)-1 is 
introduced. Experimentally, the generally undesirable effects of curvature in the 
velocity field could thus be detectable, in principle, by the presence of an algebraic, 
rather than exponential, decay in the correlation function with a t-l dependence if 
the intensity distribution is Gaussian. 

3. Experimental 
In  the preceding section, we have considered theoretically the light-scattering cor- 

relation function for the classical homodyne-scattering experiment applied to a 
flowing suspension. We have shown that the dominant contribution, under normal 
circumstances, will derive from the mean velocity gradient in the scattering volume, 
thus suggesting the potential of applying the homodyne scattering experiment to the 
technological problem of actually measuring the magnitude of -velocity gradients in 
flowing liquids. 

In  this section, we report the results of some exploratory experiments which were 
designed to test the validity of our theoretical results, and to explore the utility of 
homodyne light scattering as a method of measuring velocity gradients. Thus, two 
sets of flow experiments were performed under conditions, discussed in the preceding 
section, where the homodyne correlation function should decrease exponentially 
with time a t  a rate which depends principally on the local shear rate. In  one case, the 
velocity gradient field is known a priori, and the measurements serve to  verify the 
utility and accuracy of the method. I n  the other, we study the experimentally impor- 
tant ‘four roller’ flow device where the velocity gradient field was only approximately 
known before the present investigation. Additional experiments were also performed 
in order t o  investigate the effects of smaller values of the time-scale ratio, rt/r8,  
illustrating a situation where the theory presented would not be applicable. These 
experiments also suggest the necessary conditions for the effects of diffusion to be 
measurable in the presence of flow. 

The experiments were performed on two separate flow devices: the four-roll mill, 
illustrated in figure 3, which is used to approximate the two-dimensional, hyperbolic 
flow of equation (17) ;  and a concentric cylinder, ‘Couette’ device, shown in figure 4, 
which approximates the simple, shear flow of equation (16). The light source for both 
experiments was an argon-ion laser operating typically in the neighbourhood of 
500 mW, and the scattered light was detected using an EM1 9789 photomultiplier 
tube, Two pinholes sepazated by about 10 inches were used to collimate the scattered 
light and thereby define the scattering volume. The pinholes had a diameter of 
& in. in the four-roll experiment, and & in. in the case of the Couette device, and the 
incident wavelengths of the light were 5145 and 4880 A, respectively. The output of 
the photomultiplier tube was amplified by a Princeton Applied Research 113 pre- 
amplifier and processed with a Saicor 43A 400-channel correlator. The computed 
correlation function was then output onto a Hewlett Packard 700A X-Y  recorder. 

The dimensions of the four-roll mill are shown in figure 5. All rollers were driven 
separately with independent motors and each could be removed to allow for a one- 
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FIQURE 4. Light-scattering set-up with the Couette apparatus. 



Measurement of velocity gradients by light scattering 667 

Water jacket 
~ Fe;;mometer f 

0 
0 -  

3 

0 

1 

I 
7" 

L Jacket water 
inle t/out le t 

i 
1 
L- Mounting 

bracket 

FIGURE 5 .  The four-roll mill. 

or two-roller operation. The top and bottom of the container were constructed of 
f in. Pyrex through which the laser beam passed. A photographic study of the flow field 
generated by the apparatus was undertaken using a dilute suspension of glass spheres 
of mean diameter 100 pm in glycerin. A typical streakline photograph of the centre- 
plane velocity field is shown in figure 6, from which it appears that the two-dimensional 
hyperbolic flow of equation (17)  is reasonably well approximated in the central region 
between the four rollers. Assuming this to be true, the (uniform) velocity gradient in 
this region can be obtained by measuring the travel time At for a tracer particle to 
move from position (xl,yl) to (x2,y2). The velocity gradient for a two-dimensional 
hmerbolic flow is 
" I  

y = In e ) / A t  = In k ) / A t .  

This procedure? was carried out for rotation rates, w, of the rollers ranging from 1.4 
to 35 s-1. The result was a linear relationship between roller speed and apparent 
velocity gradient, 

y = 0 . 6 7 8 ~  ti-', (31) 

t Further details are reported by Fuller (1980). 
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as would be expected if the flow were truly given by equation (17). An interesting 
question, which we shall investigate later in this section, is whether detailed point- 
wise measurements of the velocity gradient field would support the conclusion of a 
very good approximation to the hyperbolic flow which is the obvious and strong 
inference of our streakline visualization studies. I n  the light-scattering experiment 
in the four-roll mill, the incident beam was directed into the flow device through its 
bottom by means of a front-surfaced mirror, mounted on a rotation stage capable of 
360' orientation to within 0.25". The rotation stage was in turn mounted on a trans- 
lation stage capable of a twelve inch traverse to within 0.001 in. Angular variation 
of the scattered-light wave vector was provided by mounting the photomultiplier 
tube on a wide-range vertical goniometer which could be positioned to within 0.01". 
This capability of orientating the incident and scattered wave vectors separately 
allows the orientation and magnitude of the scattering vector q to be varied inde- 
pendently. I n  addition, the four-roll mill itself was mounted on a cross-slide rotary 
table which provides the capability of translating and rotating the flow device, while 
holding the optics stationary. Thus, scattering experiments a t  different positions and 
orientation relative to  the flow are possible. 

The Couette device was constructed of a rotating inner cylinder of black, anodized 
aluminium, enclosed by a heavy-walled, precision-bore glass tube which was held 
stationary. The dimensions of the various components are indicated in figure 4. I n  
this case, the incident laser light was introduced into the gap between the two cylinders 
through a solid lucite cylinder which was cut to fit on to the outer glass cylinder such 
that the composite glass plus lucite wall formed a cylindrical section with its central 
axis at the centre of the gap. This enabled the incident beam to enter the gap region 
with a minimum of refraction a t  the lucitelair interface. The Couette device was itself 
mounted on an X - Y  translation stage which, in turn, was fastened to the hub of a 
horizontal goniorneter. The goniometer hub could be rotated independently of the 
rotating arm which supported the photomultiplier tube. 

Experiments in both apparatus were conducted using a suspension of 100 p.p.m. 
weight of Dow Polystyrene Latex spheres in glycerin. The particle diameter was 
0.091 ,um and the viscosity ofthe glycerin was found to  be 7 poise a t  20 "C. The water 
content of the glycerin was not known. 

I n  order to use equation (21) to analyse the experiments, it is necessary to ensure 
that the dynamics of the light-scattering process occur primarily on the shear-rate 
time scale (qyL)-l. The data necessary to determine the various time-scale ratios for 
the two experiments are listed in table 1. I n  table 2 we show the corresponding time- 
scaln ratios, rt/rs, rD/r, and rf/rs.  It may be seen, in both cases, that the time scale 
r,, associated with the mean velocity gradient, is very much the smallest, and i t  is 
thus expected that equation (2 1) should adequately represent the measured car- 
relation functions. 

To obtain absolute values for the shear rate from (21 ) and the measured correlation 
function, it is necessary to  also measure the intensity profile of the beam, as we have 
already noted. However, this was not done in the present experiments. Instead, the 
characteristic time, in each instance, was estimated as the time for decay of the 
correlation function t o  one-half its initial magnitude, and the shear rate was taken as 
being proportional to  the inverse of this time. Thus, the velocity gradients obtained 
(and reported) are all relative values. 
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Four-roll mill Couette 

Q 106 cm-1 106 cm-* 
L 0.08 cm 0.04 cm 
R 1 cm 1 cm 
D 10-11 cma s-1 cm2 s-l 
W 1 s-1 1 s-1 

TABLE 1 

Four-roll mill Couette 

7t/7,  6.4 x 10' 1.6 x 102 
7 D / 7 s  8 x 104 4 x 104 
71/78 8 x  10s 4 x 103 

TABLE 2 

The first flow field studied was that generated by a single rotating cylinder and this 
was accomplished by removing all but one of the rollers in the four-roll mill. Analysis 
of an infinitely long cylinder of radius R,  rotating with angular speed w, yields an r2 
dependence of shear rate on distance from the cylinder centre 

Measurement of the spatial dependence of the velocity gradient should thus lead to 
the same radial dependence, provided that the flow device approximates an infinitely 
long cylinder. 

The experimental arrangement for this case is shown in figure 7. The scattering 
vector q was orientated in the azimuthal direction and the experiment was carried 
out by holding the optics stationary while translating the flow device along the path 
indicated in figure 7. At each interval of translation, the correlation function was 
obtained and recorded. A typical correlation function is pictured in figure 8. The 
results of this procedure for two-roller speeds are shown in figure 7 where we have 
plotted the measured velocity gradient against the square of the reciprocal of the 
radial distance from the roller centre. The linearity of the data, when plotted in this 
fashion, indicates that the measured velocity gradient is consistent with the theoretical 
expression (32).  Furthermore, the fact that the slope doubles when ZL' is doubled is also 
consistent with (32). Both of these results support the validity of the homodyne- 
scatteIing method as a way of measuring the velocity gradient. 

The data do depart from linearity farther from the roller surface, but we attribute 
this to boundary effects associated with the finite cylinder Iength. The presence of a 
top and bottom on the four-roller container causes the velocity gradient to drop off 
faster than the analysis for an unbounded fluid would indicate. It is important to 
note that throughout the experiment, the shapes of the correlation functions were 
observed to remain constant. That is, by scaling the time, the correlation functions 
could be made to trace out a single curve. This verifies the assertion that the only 
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FIQURE 7.  Measured shear rate as a function of the radial distance from a single rotating roller. 
The illustration in the upper left-hand corner represents the experimental arrangement. 
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FIGURE 8. Typical correlation function for the single rotating roller experiment. 
Data taken at a scattering angle of 30". 

quantity changing is the velocity gradient and that there is only a single time scale 
controlling the correlation function. 

A second experiment was conducted using the Couette device, again intended to 
verify the homodyne method for measuring velocity gradients. In this apparatus, the 
flow field is a good approximation to simple shear flow and the velocity gradient should 
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FIGURE 9. Charecterietic frequency of the homodyne correlation function us. sin2 40. 
The flow is simple shear with the direction of flow parallel to the incident beam vector. 

thus be nearly conetant throughout the gap. The incident wave vector ki was kept 
parallel to the direction of flow and correlation functions were obtained as a function 
of scattering angle. Care was taken to ensure that the centroid of the scattering volume 
remained fixed as the scattering angle was vaned. 

Taking the velocity to be locally in the direction of x and the gradient to be in the 
direction of y, the quantity q . I' . xt would be 271 kJ sin2 &3yt. Therefore, the measured 
characteristic decay time for the z correlation function should be linear with respect 
to the quantity sin2&9. The data plotted in figure 9 show that this relationship is 
satisfied, thus again confirming the accuracy of the method for measurement of the 
velocity gradient. 

Finally, as an indication of the kind of study which can be done in more complicated 
flows, we have used the homodyne-scattering method to determine the velocity 
gradient profile for the four-roll mill when it is supposed to be generating hyperbolic 
flow. These data are of some intrinsic interest as the four-roller,device has often been 
used in studies of particle and droplet deformation and orientation but has previously 
been characterized only via visual, streakline photographyt (Pope & Keller 1977; 

t A more comprehensive study of the four-roller device is reported by Fuller (1980). 
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Rumscheidt & Mason 1961; Taylor 1934). The four-roller device is usually designed 
to simulate two-dimensional extensional flow and it is important to know how well 
the device performs in actually creating this type of homogeneous flow. The most 
important feature of the flow, for most of the particle dynamics experiments, is the 
absence of spatial variation of the velocity gradient field, 

As discussed in fj 2, the scattered light spectrum will generally be influenced by all 
non-zero gradient components of the projected velocity v. q. However, for the case 
of a single rotating cylinder, with the light-scattering volume situated half way 
between the top and bottom of the cylinder, there is, a t  leading order, only a single, 
radial component of the velocity gradient, and there is therefore no ambiguity in 
interpreting what the experiment measures. However, in the more complex geomebry 
of the four-roll mill, there will in general be more than one non-zero component of the 
velocity gradient. By making the scattering volume highly elongated one could, in 
principle, determine each velocity gradient component separately. We did not attempt 
this procedure here, but instead used symmetry of the flow field at the centre plane 
and took measurements along the centre streamline of the centre plane with the 
scattering vector q parallel to the velocity component in the x direction. Along this 
centre streamline, avx/ay and av,/8z are zero to at least a first-order of approximation, 
and the experiment thus yields values for avx/ax. 

It may be anticipated that the velocity field in the four-roll mill contains a saddle 
point close to the position of closest approach between any two adjacent rollers. A t  
these points the velocity gradient will vanish and the time-scale ratio 7J7, will no 
longer be large enough for the correlation function to be related to the intensity profile 
by equation (20). Therefore, in the vicinity of these points one would expect the 
correlation function to change shape and to no longer be characterized by 8 single 
time scale which is inversely proportional to the velocity gradient. It was found, 
however, that the regions where there was a noticeable change in the shape of the 
measured correlation function were very small (less than one-tenth of an inch in the 
flow direction) and data in these regions are simply not included here. 

The measured velocity gradient profile is pictured in figure 10. Data taken with the 
direction of the rollers reversed fell on the same curve. The profile clearly shows that 
the region of homogeneity in the flow field (constant velocity gradient) is confined to 
an area whose length is approximately equivalent to the gap width between the 
rollers. A study was also undertaken of the dependence of the velocity gradient on 
roller speed with the scattering volume stationary a t  the centre of the four-roll device. 
This study showed that the dependence was linear over the entire range of roller speeds 

A short investigation was also carried out in order to see whether conditions could 
be achieved where it would be possible to see the effects of diffusion of the scattering 
particles on the scattering data. Such data would be of considerable interest since 
the rate of diffusion is sensitive to the conformation of the scattering particles (or 
molecules) and would provide information about flow-induced deformation or, in 
the case of rigid non-spherical particles, orientation. This study was carried out in both 
apparatus and involved an attempt to set the scattering vector q normal to the plane 
of flow so that q . I'. x = 0 everywhere in the scattering volume. In the Couette 
device, the vector q was orientated radially with a scattering angle of about 60". In 
the four-roll mill experiment, q was set parallel to the z axis with a scattering angle 

(0-35 p-1). 
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FIGURE 10. Characteristic frequency as a function of distance along the centre stream line in the 
four-roll mill simulating hyperbolic flow. The scattering angle was 50.7" and the rate of rotation 
of the rollers was 1.75 8-1. The large circles indicate the position of the rollers with respect to 
the bottom ordinate. 

of 120". If equation (15) was appropriate and the orientation of q sufficiently precise, 
this configuration would eliminate the effect of the shear rate on the light scattering 
correlation function, leaving only the diffusion process. However, in the case of the 
Couette apparatus, the presence of a small but finite curvature in the streamlines and 
a non-zero mean velocity in the scattering volume caused the correlation function to 
be dominated still by flow effects and the measured time scale for the correlation 
function remained orders of magnitude faster than the diffusive time scale. In  the 
four-roll mill, on the other hand, the measured characteristic time scale was reduced 
to the same order of magnitude as the diffusive time scale. This was accomplished by 
placing the scattering volume in the vicinity of the stagnation point in the flow and 
using a high scattering angle. There was, however, a small z component of velocity 
and an associated velocity gradient due to the effect of the top and bottom boundaries, 
and for this reason it would probably not be possible for the diffusive process to 
completely dominate the correlation function in the present system. 

The criterion which must be satisfied in order that the diffusive effects dominate the 
spectrum is that 

If the scattering volume is centred on the stagnation point, the velocity U will be of 
the order of yL and the ratio becomes 

For most situations of interest, the Pbclet number will be no larger than O(1). There- 
fore, in order to exhibit a dominant diffusive effect, the experiment would have to be 
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performed at  higher angle using relatively large particles. It would also be necessary, 
as in the present experiments, to have the scattering vector normal to the plane of 
flow and to have the scattering volume centred on a stagnation point. 

4. Conclusions 
We have examined the application of homodyne light scattering techniques to a 

laminar flow field, both theoretically and experimentally. Although many dynamic 
processes contribute to the frequency spectrum of the scattered light, we have seen 
that the dominant effect on the light scattering correlation function will normally be 
due to the presence of velocity gradients in the scattering volume. Thus, we have 
shown theoretically, and confirmed via experiment, that the homodyne light scattering 
experiment provides a direct method to measure the velocity gradients. 

In its present state of development, the most serious limitation of the method is 
that all components of the gradient of the projected velocity, v.  q, contribute to the 
spectrum. Although this deficiency may be overcome in principle by creating an 
anisotropic scattering volume, this was not pursued in the present investigation since 
the experiments studied had only one gradient component of velocity in the scattering 
volume. A second limitation is that the intensity profile of the beam must be known 
in order to quantify the gradients in an absolute sense. This information can be ob- 
tained experimentally without much difficulty. Unfortunately, however, the intensity 
profile will generally not be maintained for extended periods of time. The laser beam 
profiIe in our system was certainly stable for periods of the order of days, but often 
changed in as little as a week as the laser optics require cleaning and retuning. 

The chief advantage of the homodyne light scattering technique relative to more 
conventional measurement techniques is that the shear rate can be obtained in a 
single, ' non-invasive ' experiment, without the need for accurate repositioning of the 
measurement point as would be required if one were to simply differentiate velocity 
data. The results are therefore more accurate and reliable than was previously possible. 
In addition, the present technique can be used in situations where the velocity changes 
rapidly in narrow regions (and in this case, the principal component of Vu is normal 
to u, thus minimizing the major ambiguity of interpretation which was discussed 
above). 

In contrast, the usefulness of homodyne scattering experiments to determine any- 
thing of the diffusive motions (and, thus, indirectly the conformational state) of the 
scattering elements as is conventionally done in quiescent solutions or suspensions, 
would appear to be highly limited for flowing systems. The short investigation which 
we have carried out here suggests that it would be necessary for the scattering volume 
to be centred on a stagnation point of the flow, in order even to approach the necessary 
conditions for the correlation function to be dominated by the effects of Brownian 
diffusion. In addition, in order that rD/rt < O(l ) ,  it is necessary that ql > O(1) and 
this requires that the measurements be carried out at  high scattering angles with 
relatively large particles. These various restrictions greatly reduce the potential 
utility of homodyne dynamic scattering for purposes other than measurement of the 
local mean velocity gradient in flowing systems. 

This work was supported by a grant from the Office of Naval Research. 
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FIGURE 6. Streakline photograph of flow generated by the four-roll mill. The particles wore 
illuminated by a planar sheet of light at  the mid-height of the rollers. 

(Facing p .  37(i)  


